Integrable matrix equations related to pairs of compatible associative algebras
نویسندگان
چکیده
منابع مشابه
Integrable ODEs on Associative Algebras
In this paper we give definitions of basic concepts such as symmetries, first integrals, Hamilto-nian and recursion operators suitable for ordinary differential equations on associative algebras, and in particular for matrix differential equations. We choose existence of hierarchies of first integrals and/or symmetries as a criterion for integrability and justify it by examples. Using our compo...
متن کاملAssociative Algebras Related to Conformal Algebras
In this note, we introduce a class of algebras that are in some sense related to conformal algebras. This class (called TC-algebras) includes Weyl algebras and some of their (associative and Lie) subalgebras. By a conformal algebra we generally mean what is known as H-pseudo-algebra over the polynomial Hopf algebra H = k[T1, . . . , Tn]. Some recent results in structure theory of conformal alge...
متن کاملContinuous-discrete integrable equations and Darboux transformations as deformations of associative algebras
Deformations of the structure constants for a class of associative noncommutative algebras generated by Deformation Driving Algebras (DDA’s) are defined and studied. These deformations are governed by the Central System (CS). Such a CS is studied for the case of DDA being the algebra of shifts. Concrete examples of deformations for the three-dimensional algebra governed by discrete and mixed co...
متن کاملLax pairs for the equations describing compatible nonlocal Poisson brackets of hydrodynamic type, and integrable reductions of the Lamé equations
In the present work, the nonlinear equations for the general nonsingular pairs of compatible nonlocal Poisson brackets of hydrodynamic type are derived and the integrability of these equations by the method of inverse scattering problem is proved. For these equations, the Lax pairs with a spectral parameter are presented. Moreover, we demonstrate the integrability of the equations for some espe...
متن کاملQuantum deformations of associative algebras and integrable systems
Quantum deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by the quantum central systems which has a geometrical meaning of vanishing Riemann curvature tensor for Christoffel symbols identified with the structure constants. A subclass of isoassociative quantum deformations is described by the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2006
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/39/40/011